Polynomial basis conversion made stable by truncated singular value decomposition
نویسندگان
چکیده
منابع مشابه
پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )
در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...
15 صفحه اولOn the truncated multilinear singular value decomposition
In this report, we investigate the truncated multilinear singular value decomposition (MLSVD), proposed in De Lathauwer et al. (2000). Truncating the MLSVD results in an approximation, with a prescribed multilinear rank, to a tensor. We present a new error expression for an approximate Tucker decomposition with orthogonal factor matrices. From this expression, new insights are obtained which le...
متن کاملOn the Statistical Meaning of Truncated Singular Value Decomposition
Empirical data collected in practice usually are not exact. For various reasons it is often suggested in many applications to replace the original data matrix by some lower dimensional representation obtained via subspace approximation or truncation. The truncated singular value decomposition, for example, is one of the most commonly used representations. This note attempts to shed some light o...
متن کاملSingular Value Decomposition (SVD) and Generalized Singular Value Decomposition (GSVD)
The singular value decomposition (SVD) is a generalization of the eigen-decomposition which can be used to analyze rectangular matrices (the eigen-decomposition is definedonly for squaredmatrices). By analogy with the eigen-decomposition, which decomposes a matrix into two simple matrices, the main idea of the SVD is to decompose a rectangular matrix into three simple matrices: Two orthogonal m...
متن کاملVector Extrapolation Applied to Truncated Singular Value Decomposition and Truncated Iteration
This paper is concerned with the computation of accurate approximate solutions of linear systems of equations and linear least-squares problems with a very ill-conditioned matrix and error-contaminated data. The solution of this kind of problems requires regularization. Common regularization methods include the truncated singular value decomposition and truncated iteration with a Krylov subspac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 1997
ISSN: 0307-904X
DOI: 10.1016/s0307-904x(97)00052-8